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Abstract

Photoplethysmography (PPG) is widely used in wear-
able devices for monitoring cardiovascular health, but its
signal quality can be severely affected by ambient light
interference and suboptimal sensor-skin contact. In this
study, we propose the Contact Quality Index (CQI), a
novel metric based on spectral analysis of the ambient
light channel, designed to quantify signal integrity in real
time. Data were collected using a wrist band which pro-
vided an ambient light channel synchronized with three
PPG channels. The CQI was computed from the Power
Spectral Density (PSD) of the ambient light signal, cap-
turing deviations that correlate with light-induced artifacts
and poor contact. Validation experiments demonstrated
a strong association between the CQI and signal quality.
Specifically, higher PSD values of the ambient light signal
were indicative of unstable sensor contact and significant
ambient light perfusion. In contrast, properly positioned
sensors showed lower PSD values, reflecting stable con-
tact and minimal external light disturbance. Compared
to traditional signal quality indices, the CQI provides a
computationally efficient, interpretable, and morphology-
independent metric that is particularly suited for integra-
tion into wearable health monitoring systems. The pro-
posed approach enables detection and rejection of cor-
rupted segments, enhancing robust real-time monitoring.

1. Introduction

Photoplethysmography (PPG) is widely used for mon-
itoring cardiovascular parameters such as HR, HRV, and
SpO2 [[1,]2]], thanks to its non-invasive nature and easy in-
tegration into wearables [3]]. It underpins modern health
monitoring technologies and is applied in fitness tracking,
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remote patient monitoring, and early detection of cardio-
vascular diseases [4]. However, PPG reliability is often
challenged by noise, notably ambient light interference [5]].

PPG sensors detect light intensity reflected or transmit-
ted through the skin [6], but external sources like sunlight
and artificial lighting introduce noise, causing amplitude
fluctuations and waveform distortions that hinder parame-
ter extraction [7|]. These effects are more severe in uncon-
trolled environments with dynamic lighting [/7].

To mitigate ambient light interference, hardware and
software strategies have been proposed [8,9]]. Yet, their
effectiveness is limited in wearables due to constraints in
real-time processing, power consumption, and adaptabil-
ity [[10], highlighting the need for efficient methods.

This work introduces the Contact Quality Index (CQI),
a spectral analysis-based metric for assessing PPG signal
quality. Derived from the Power Spectral Density (PSD),
the CQI estimates noise levels and identifies segments af-
fected by ambient light interference—often linked to poor
sensor-skin contact.

2. Materials and Methods

Ambient light signals were acquired using the Polar Ver-
ity Sense device (Polar Electro Oy, Finland), a wearable
optical sensor providing three PPG channels and a dedi-
cated ambient light channel. This configuration enables
synchronized signal acquisition at a fixed sampling rate
of 55 Hz. The dataset comprised recordings from 50 pa-
tients in which 60% were women, 10% led active lifestyles
and 60% were under cardiovascular medications like beta-
blockers or statins. Participants followed their daily rou-
tines while wearing the device.

The ambient light signal was segmented into fixed-
length windows of 5 seconds to facilitate time-resolved
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Figure 1: Examples of ambient light contamination in PPG
signals. (a) Proper sensor placement yields a clean PPG
signal; (b) its corresponding power spectral density shows
low noise levels. (c) Improper placement causes ambient
light contamination, resulting in a corrupted PPG signal,
(d) the PSD reflects increased overall energy due to noise.

analysis of environmental interference, as ambient light
conditions can change rapidly over short time intervals.
Each segment was processed independently to detect tran-
sient events, such as sensor displacement or sudden ex-
posure to external light sources. For each 5-second win-
dow, the PSD of the ambient light signal was estimated
using Welch’s method [11]]. A 50% overlap between sub-
segments was applied to ensure temporal continuity and
enhance the statistical reliability of the PSD estimate. To
mitigate spectral leakage and improve frequency resolu-
tion, a Hamming window was applied to each subsegment
before performing the Fourier Transform. An FFT length
of 2048 points was selected to achieve fine-grained identi-
fication of spectral components.

The PSD will be used to highlight distinct patterns that
correspond to varying sensor contact conditions, as illus-
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Figure 2: Workflow for CQI computation. a) Raw PSD
area per segment, capturing total spectral power. b) Log-
arithmically transformed PSD values to enhance visibility
of variations. c¢) Normalized and inverted CQI, providing
a continuous indicator of signal contamination.

trated in the example of Figure[I] When the sensor is prop-
erly affixed to the skin, the PSD exhibited reduced values.
This pattern would suggest minimal interference from am-
bient light and stable contact, allowing for reliable extrac-
tion of physiological information.

To objectively capture and quantify these variations in
signal quality, the Contact Quality Index (CQI) is pro-
posed, with a computation pipeline as shown in Figure [2]
which consists of three key steps. First, the PSD area is
calculated for each 5-second segment via numerical inte-
gration using a trapezoidal method with unit spacing, thus
capturing the total spectral energy. Given the wide dy-
namic range of the PSD values, a logarithmic transforma-
tion is applied to compress large variations and enhance
interpretability. Finally, the transformed values are nor-
malized to a 0-to-1 range based on the minimum and max-
imum values observed across all the patient’s recordings,
and then inverted, so that higher CQI values correspond to
better sensor-skin contact and reduced ambient light con-
tamination.

To further validate the effectiveness of the CQI as a
proxy for signal fidelity, signal quality was assessed on
345,600 segments. For each segment, the Signal-to-Noise
Ratio was computed using a MATLAB function, consid-
ering as signal the standard frequency components of the
PPG and as noise the remaining spectral content, along
with standard SQI indices—skewness, kurtosis, and en-
tropy [12]—and the Contact Quality Index. These metrics
were then averaged across all segments. Pearson’s correla-
tion coefficient (r) and the corresponding p-value between
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the CQI, SNR, and SQIs were calculated.

3. Results

Based on CQI and SNR values, two distinct quality
groups were identified: segments with signal-to-noise ratio
(SNR) above 20 dB and CQI values above 0.8 were labeled
as having stable contact and minimal artifacts, while seg-
ments with SNR below 18 dB and CQI below 0.4 were
considered affected by light contamination and unstable
sensor contact.

According to this classification, approximately 80% of
the segments (276,480) belonged to the stable contact and
minimal artifacts group, with an average SNR of 28.03 dB
and an average CQI of 0.8. The remaining 20% (69,120
segments) were classified as unstable contact and high ar-
tifacts group, showing an average SNR of 14.5 dB and an
average CQI of 0.3.

High CQI segments showed lower skewness variability
(0.007 £ 0.669) and lower kurtosis (2.392 + 1.455) com-
pared to low CQI segments (0.173 £+ 0.485 and 3.200 +
2.358, respectively). Entropy was slightly lower in high-
quality segments (5.239 £ 0.219) than in poor-quality ones
(5.870 £ 0.781).

A significant positive linear correlation was observed
between CQI and SNR (r = 0.72, p < 0.001). Moreover,
CQI negatively correlated with skewness (r = —0.65,
p < 0.001), kurtosis (r = —0.58, p < 0.001), and en-
tropy (r = —0.62, p < 0.01).

4. Discussion

The CQI demonstrated a clear inverse relationship with
ambient light noise: it remained high during stable sen-
sor placement and low environmental noise, and dropped
notably in the presence of poor contact or increased light
exposure, effectively capturing signal degradation.

High-CQI segments exhibited more symmetric and less
peaked signal distributions—evidenced by lower skewness
variability, kurtosis, and entropy—reflecting a more regu-
lar and stable signal structure. The strong positive corre-
lation between CQI and SNR, along with negative correla-
tions with skewness, kurtosis, and entropy, further supports
CQU’s validity as a reliable composite metric for assessing
PPG signal quality.

Unlike traditional SQIs that rely on waveform morphol-
ogy [13] or spectral analysis of physiological signal and
noise (SNR) [14], CQI specifically targets spectral fea-
tures of ambient light interference, detecting contamina-
tion even without obvious morphological changes. As
shown in Figure [3] CQI reliably differentiates high- and
low-quality segments, enabling real-time quality feedback.
This method addresses a critical need in wearable health
monitoring: reliably detecting environmental artifacts that
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Figure 3: Demonstration of CQI performance under envi-
ronmental artifacts. Panels (a) and (b) illustrate that high
CQI values (close to 1) correspond to clean PPG signals
with negligible artifacts, whereas panels (c) and (d) show
that low CQI values (close to 0) are associated with noisy
PPG signals affected by ambient light interference.

degrade signal quality, while operating with low computa-
tional cost and without the need for training data.

Furthermore, machine learning-based classifiers have
also been explored for quality assessment; however, they
often require large annotated datasets and involve opaque
decision-making processes [13]. By contrast, CQI is
transparent, lightweight, and explainable—making it well-
suited for deployment in resource-constrained systems
such as fitness trackers and clinical wearables. Its nor-
malized scale from O to 1 allows for easily configurable
thresholds based on application requirements.

Moreover, the observed correlation between CQI and
other SQIs [12] indicates that it can be seamlessly incor-
porated into existing quality assessment frameworks as a
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complementary feature, providing a more comprehensive
evaluation that accounts for both morphological signal in-
tegrity and environmental interference.

As a future direction, the CQI could be integrated into
adaptive preprocessing pipelines to automatically flag or
discard low-quality segments before more computation-
ally expensive signal processing steps. This would further
enhance the robustness and energy efficiency of wearable
monitoring systems.

5. Conclusions

The CQI provides a valuable and interpretable tool for
assessing the presence of ambient light artifacts in PPG
signal acquisition, effectively accounting for both sensor-
skin contact and environmental light interference. How-
ever, it is important to note that while the CQI can indi-
cate the absence of external light contamination and sug-
gest good sensor placement, it does not fully capture all
potential factors influencing PPG signal quality. Specifi-
cally, mechanical movement, which can introduce signif-
icant artifacts, is not addressed by the CQI. For instance,
even in the absence of ambient light, moving the PPG sen-
sor could still degrade signal quality, resulting in poor sig-
nal integrity even when the CQI is high.

This highlights the need for a more comprehensive ap-
proach that considers both light contamination and me-
chanical disturbances. A simple yet effective direction
would be to jointly analyze the ambient light channel to-
gether with accelerometer data, allowing the estimation of
both types of disturbances. Future work will therefore fo-
cus on refining the CQI’s implementation to incorporate
these additional modalities, and on exploring its integra-
tion into preprocessing pipelines for adaptive filtering, ar-
tifact rejection, and overall signal validation.
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